Higher Order Fourier Analysis

Higher Order Fourier Analysis
Author: Terence Tao
Publisher: American Mathematical Soc.
Total Pages: 202
Release: 2012-10-04
Genre: Mathematics
ISBN: 0821889869

Traditional Fourier analysis, which has been remarkably effective in many contexts, uses linear phase functions to study functions. Some questions, such as problems involving arithmetic progressions, naturally lead to the use of quadratic or higher order phases. Higher order Fourier analysis is a subject that has become very active only recently. Gowers, in groundbreaking work, developed many of the basic concepts of this theory in order to give a new, quantitative proof of Szemeredi's theorem on arithmetic progressions. However, there are also precursors to this theory in Weyl's classical theory of equidistribution, as well as in Furstenberg's structural theory of dynamical systems. This book, which is the first monograph in this area, aims to cover all of these topics in a unified manner, as well as to survey some of the most recent developments, such as the application of the theory to count linear patterns in primes. The book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature on the subject. There are numerous exercises with which to test one's knowledge.


Higher Order Fourier Analysis

Higher Order Fourier Analysis
Author: Terence Tao
Publisher: American Mathematical Soc.
Total Pages: 202
Release: 2012-12-30
Genre: Education
ISBN: 1470459981

Higher order Fourier analysis is a subject that has become very active only recently. This book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature.


Higher-Order Fourier Analysis and Applications

Higher-Order Fourier Analysis and Applications
Author: Hamed Hatami
Publisher:
Total Pages: 230
Release: 2019-09-26
Genre: Computers
ISBN: 9781680835922

Higher-order Fourier Analysis and Applications provides an introduction to the field of higher-order Fourier analysis with an emphasis on its applications to theoretical computer science. Higher-order Fourier analysis is an extension of the classical Fourier analysis. It has been developed by several mathematicians over the past few decades in order to study problems in an area of mathematics called additive combinatorics, which is primarily concerned with linear patterns such as arithmetic progressions in subsets of integers. The monograph is divided into three parts: Part I discusses linearity testing and its generalization to higher degree polynomials. Part II present the fundamental results of the theory of higher-order Fourier analysis. Part III uses the tools developed in Part II to prove some general results about property testing for algebraic properties. It describes applications of the theory of higher-order Fourier analysis in theoretical computer science, and, to this end, presents the foundations of this theory through such applications; in particular to the area of property testing.


Fourier Analysis on Finite Groups and Applications

Fourier Analysis on Finite Groups and Applications
Author: Audrey Terras
Publisher: Cambridge University Press
Total Pages: 456
Release: 1999-03-28
Genre: Mathematics
ISBN: 9780521457187

It examines the theory of finite groups in a manner that is both accessible to the beginner and suitable for graduate research.


Fourier Analysis

Fourier Analysis
Author: T. W. Körner
Publisher: Cambridge University Press
Total Pages:
Release: 2022-06-09
Genre: Mathematics
ISBN: 1009230077

Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.


Classical Fourier Analysis

Classical Fourier Analysis
Author: Loukas Grafakos
Publisher: Springer Science & Business Media
Total Pages: 494
Release: 2008-09-18
Genre: Mathematics
ISBN: 0387094326

The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online


Numerical Fourier Analysis

Numerical Fourier Analysis
Author: Gerlind Plonka
Publisher: Springer
Total Pages: 624
Release: 2019-02-05
Genre: Mathematics
ISBN: 3030043061

This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.


Early Fourier Analysis

Early Fourier Analysis
Author: Hugh L. Montgomery
Publisher: American Mathematical Soc.
Total Pages: 402
Release: 2014-12-10
Genre: Mathematics
ISBN: 1470415607

Fourier Analysis is an important area of mathematics, especially in light of its importance in physics, chemistry, and engineering. Yet it seems that this subject is rarely offered to undergraduates. This book introduces Fourier Analysis in its three most classical settings: The Discrete Fourier Transform for periodic sequences, Fourier Series for periodic functions, and the Fourier Transform for functions on the real line. The presentation is accessible for students with just three or four terms of calculus, but the book is also intended to be suitable for a junior-senior course, for a capstone undergraduate course, or for beginning graduate students. Material needed from real analysis is quoted without proof, and issues of Lebesgue measure theory are treated rather informally. Included are a number of applications of Fourier Series, and Fourier Analysis in higher dimensions is briefly sketched. A student may eventually want to move on to Fourier Analysis discussed in a more advanced way, either by way of more general orthogonal systems, or in the language of Banach spaces, or of locally compact commutative groups, but the experience of the classical setting provides a mental image of what is going on in an abstract setting.


Fourier Analysis and Boundary Value Problems

Fourier Analysis and Boundary Value Problems
Author: Enrique A. Gonzalez-Velasco
Publisher: Elsevier
Total Pages: 565
Release: 1996-11-28
Genre: Mathematics
ISBN: 0080531938

Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. - Topics are covered from a historical perspective with biographical information on key contributors to the field - The text contains more than 500 exercises - Includes practical applications of the equations to problems in both engineering and physics