Data Science for Business and Decision Making

Data Science for Business and Decision Making
Author: Luiz Paulo Favero
Publisher: Academic Press
Total Pages: 1246
Release: 2019-04-11
Genre: Business & Economics
ISBN: 0128112174

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs


Data Science for Business

Data Science for Business
Author: Foster Provost
Publisher: "O'Reilly Media, Inc."
Total Pages: 506
Release: 2013-07-27
Genre: Computers
ISBN: 144937428X

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates


Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions

Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions
Author: Matt Taddy
Publisher: McGraw Hill Professional
Total Pages: 350
Release: 2019-08-23
Genre: Business & Economics
ISBN: 1260452786

Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.


Business Analytics for Decision Making

Business Analytics for Decision Making
Author: Steven Orla Kimbrough
Publisher: CRC Press
Total Pages: 308
Release: 2018-09-03
Genre: Business & Economics
ISBN: 1315362597

Business Analytics for Decision Making, the first complete text suitable for use in introductory Business Analytics courses, establishes a national syllabus for an emerging first course at an MBA or upper undergraduate level. This timely text is mainly about model analytics, particularly analytics for constrained optimization. It uses implementations that allow students to explore models and data for the sake of discovery, understanding, and decision making. Business analytics is about using data and models to solve various kinds of decision problems. There are three aspects for those who want to make the most of their analytics: encoding, solution design, and post-solution analysis. This textbook addresses all three. Emphasizing the use of constrained optimization models for decision making, the book concentrates on post-solution analysis of models. The text focuses on computationally challenging problems that commonly arise in business environments. Unique among business analytics texts, it emphasizes using heuristics for solving difficult optimization problems important in business practice by making best use of methods from Computer Science and Operations Research. Furthermore, case studies and examples illustrate the real-world applications of these methods. The authors supply examples in Excel®, GAMS, MATLAB®, and OPL. The metaheuristics code is also made available at the book's website in a documented library of Python modules, along with data and material for homework exercises. From the beginning, the authors emphasize analytics and de-emphasize representation and encoding so students will have plenty to sink their teeth into regardless of their computer programming experience.


Data Science and Multiple Criteria Decision Making Approaches in Finance

Data Science and Multiple Criteria Decision Making Approaches in Finance
Author: Gökhan Silahtaroğlu
Publisher: Springer Nature
Total Pages: 183
Release: 2021-05-29
Genre: Business & Economics
ISBN: 3030741761

This book considers and assesses essential financial issues by utilizing data science and fuzzy multiple criteria decision making (MCDM) methods. It introduces readers to a range of data science methods, and demonstrates their application in the fields of business, health, economics, finance and engineering. In addition, it provides suggestions based on the assessment results on each topic, which can help to enhance the efficiency of the financial system and the sustainability of economic development. Given its scope, the book will help readers broaden their perspective on the assessment and evaluation of financial issues using data science and MCDM approaches.


Data Science for Economics and Finance

Data Science for Economics and Finance
Author: Sergio Consoli
Publisher: Springer Nature
Total Pages: 357
Release: 2021
Genre: Application software
ISBN: 3030668916

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.


Real-world Data Mining

Real-world Data Mining
Author: Dursun Delen
Publisher: Pearson Education
Total Pages: 289
Release: 2015
Genre: Business & Economics
ISBN: 0133551075

As business becomes increasingly complex and global, decision-makers must act more rapidly and accurately, based on the best available evidence. Modern data mining and analytics is indispensable for doing this. Real-World Data Mining demystifies current best practices, showing how to use data mining and analytics to uncover hidden patterns and correlations, and leverage these to improve all business decision-making. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, Delen provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: data mining processes, methods, and techniques; the role and management of data; tools and metrics; text and web mining; sentiment analysis; and integration with cutting-edge Big Data approaches. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials.


Customer and Business Analytics

Customer and Business Analytics
Author: Daniel S. Putler
Publisher: CRC Press
Total Pages: 314
Release: 2012-05-07
Genre: Business & Economics
ISBN: 146650398X

Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex


Business Analytics

Business Analytics
Author: S. Christian Albright
Publisher:
Total Pages: 952
Release: 2017
Genre: Decision making
ISBN: 9789814834391