An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems
Author: Andreas Kirsch
Publisher: Springer Science & Business Media
Total Pages: 304
Release: 1996-09-26
Genre: Science
ISBN: 9780387945309

Following Keller [119] we call two problems inverse to each other if the for mulation of each of them requires full or partial knowledge of the other. By this definition, it is obviously arbitrary which of the two problems we call the direct and which we call the inverse problem. But usually, one of the problems has been studied earlier and, perhaps, in more detail. This one is usually called the direct problem, whereas the other is the inverse problem. However, there is often another, more important difference between these two problems. Hadamard (see [91]) introduced the concept of a well-posed problem, originating from the philosophy that the mathematical model of a physical problem has to have the properties of uniqueness, existence, and stability of the solution. If one of the properties fails to hold, he called the problem ill-posed. It turns out that many interesting and important inverse in science lead to ill-posed problems, while the corresponding di problems rect problems are well-posed. Often, existence and uniqueness can be forced by enlarging or reducing the solution space (the space of "models"). For restoring stability, however, one has to change the topology of the spaces, which is in many cases impossible because of the presence of measurement errors. At first glance, it seems to be impossible to compute the solution of a problem numerically if the solution of the problem does not depend continuously on the data, i. e. , for the case of ill-posed problems.


Computational Methods for Inverse Problems

Computational Methods for Inverse Problems
Author: Curtis R. Vogel
Publisher: SIAM
Total Pages: 195
Release: 2002-01-01
Genre: Mathematics
ISBN: 0898717574

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.


A Taste of Inverse Problems

A Taste of Inverse Problems
Author: Martin Hanke
Publisher: SIAM
Total Pages: 171
Release: 2017-01-01
Genre: Mathematics
ISBN: 1611974933

Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.


Introduction to Inverse Problems in Imaging

Introduction to Inverse Problems in Imaging
Author: M. Bertero
Publisher: CRC Press
Total Pages: 366
Release: 2020-08-30
Genre: Technology & Engineering
ISBN: 9781439822067

This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.


Inverse Problem Theory and Methods for Model Parameter Estimation

Inverse Problem Theory and Methods for Model Parameter Estimation
Author: Albert Tarantola
Publisher: SIAM
Total Pages: 349
Release: 2005-01-01
Genre: Mathematics
ISBN: 9780898717921

While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.


Inverse Problems

Inverse Problems
Author: Mathias Richter
Publisher: Birkhäuser
Total Pages: 248
Release: 2016-11-24
Genre: Mathematics
ISBN: 3319483846

The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.


Parameter Estimation and Inverse Problems

Parameter Estimation and Inverse Problems
Author: Richard C. Aster
Publisher: Elsevier
Total Pages: 406
Release: 2018-10-16
Genre: Science
ISBN: 0128134232

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner


An Introduction to Inverse Problems with Applications

An Introduction to Inverse Problems with Applications
Author: Francisco Duarte Moura Neto
Publisher: Springer Science & Business Media
Total Pages: 255
Release: 2012-09-14
Genre: Mathematics
ISBN: 3642325564

Computational engineering/science uses a blend of applications, mathematical models and computations. Mathematical models require accurate approximations of their parameters, which are often viewed as solutions to inverse problems. Thus, the study of inverse problems is an integral part of computational engineering/science. This book presents several aspects of inverse problems along with needed prerequisite topics in numerical analysis and matrix algebra. If the reader has previously studied these prerequisites, then one can rapidly move to the inverse problems in chapters 4-8 on image restoration, thermal radiation, thermal characterization and heat transfer. “This text does provide a comprehensive introduction to inverse problems and fills a void in the literature”. Robert E White, Professor of Mathematics, North Carolina State University


Inverse Problems in the Mathematical Sciences

Inverse Problems in the Mathematical Sciences
Author: Charles W. Groetsch
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2013-12-14
Genre: Technology & Engineering
ISBN: 3322992020

Inverse problems are immensely important in modern science and technology. However, the broad mathematical issues raised by inverse problems receive scant attention in the university curriculum. This book aims to remedy this state of affairs by supplying an accessible introduction, at a modest mathematical level, to the alluring field of inverse problems. Many models of inverse problems from science and engineering are dealt with and nearly a hundred exercises, of varying difficulty, involving mathematical analysis, numerical treatment, or modelling of inverse problems, are provided. The main themes of the book are: causation problem modeled as integral equations; model identification problems, posed as coefficient determination problems in differential equations; the functional analytic framework for inverse problems; and a survey of the principal numerical methods for inverse problems. An extensive annotated bibliography furnishes leads on the history of inverse problems and a guide to the frontiers of current research.